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Abstract We proceed with pseudo-q-Appell polynomials in the spirit
of [12]. It turns out that these q-Bernoulli numbers are the same as
BJHC,ν,q. As in [12] we find q-analogues of many formulas in [38], the
umbral calculus works remarkably well also for pseudo-q-Appell pol.,
only the q is put up instead of down corresponding to inversion of basis.
We also find new q-Euler-Maclaurin expansions.

1. Historical introduction

This is a continuation of [12]. The aim is to present pseudo-q-
Appell polynomials and to give the corresponding formulas for pseudo-
q-Bernoulli and pseudo-q-Euler polynomials. In this chapter some his-
torical aspects of umbral calculus as well as finite differences are given.
The purpose is to point out the close connection between these two sub-
jects. The related Stirling numbers are also discussed. We also present
two new q-Euler-Maclaurin formulas together with the most important
q-Appell polynomial formulas from [12]. In the second chapter we come
to the core of the article, the pseudo-q-Appell polynomials, which show
a remarkable resemblance to the q-Appell polynomials.

The Bernoulli- and Stirling numbers are intimately connected by a
well-known formula, they complement each other. The Stirling num-
bers were probably first used by Thomas Harriot (c. 1560-1621), a
British astronomer and mathematician, who seldom published his writ-
ings due to financial insecurity. In 1715 Brook Taylor (1685-1731) used
calculus of finite differences in his monumental work Methodus Incre-
mentorum Directa et Inversa. Taylor travelled to France to see Pierre
Rémond de Montmort (1678-1719), who had published on series with
inverse factorial function argument, a precursor to the q-binomial the-
orem.

James Stirling (1692-1770) in his most important work Methodus
Differentialis [45] gave a treatise on the calculus of finite differences.
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Here we can find the series

1

x − a
=

1

x
+

a

x(x + 1)
+

a(a + 1)

x(x + 1)(x + 2)
+ . . . , (1)

usually called Stirling’s series, but given before by Montmort and François
Nicole (1683-1758) [35] in 1717 [49, p. 32]. This formula for a slowly
converging series was later q-deformed by F.-H. Jackson.

By this time the Bernoulli numbers were well-known in England;
around 1735, Colin Maclaurin (1698-1746) and Euler independently
discovered the Euler-Maclaurin summation formula. There are more
than one form of this formula. The form I is the one found in Saalschütz
[44], with q-version in [12]. In this paper we find two q-analogues of
Nørlund’s form II. Finally, there is Malmsten’s form III, which is similar
to II.

Already in 1803 Robert Woodhouse (1773-1827) had attempted to
put the calculus on a rigorous algebraic foundation using a formal se-
ries expansions method similar to that developed by Lagrange in his
important book Principles of Analytic Calculation.

The first immediate reaction on Woodhouse 1803 book came when
Rev. John Brinkley (1763-1835) in a paper in Phil. Trans. Royal
Soc. London in 1807 started the first symbolic calculus. The Brinkley
paper contained some abbreviations for expressions like xn

n!
and ẋ

n!
. Here

ẋ is the fluxion of x. Brinkley also calculated with expressions for
differences of nothing, the precursor of Stirling numbers. Of course the
Stirling numbers were known already to Thomas Harriot, but Brinkley
probably knew nothing about this. Although Brinkley knew about
Arbogast, he writes: My publication has hitherto been delayed by my
unwillingness to offer a fluxional notation different from either that of
Newton or Leibniz, each of which is very inconvenient as far as regards
the application of the theorems for finding fluxions.

Brinkley’s work became widely known in Russia, partly due to his
fame as astronomer. After having acquired the chair of astronomy at
Trinity College, Dublin, in 1790, Brinkley had to wait 18 years until the
new telescope was erected, where it still stands. Brinkley was eighteen
years waiting for his telescope, and he had eighteen years more in which
to use it. During the first of these periods Brinkley devoted himself
to mathematical research; during the latter he became a celebrated
astronomer.

The Lucas umbral calculus was widespread in Russia, for example
you will find the formula defining the Bernoulli numbers in Chistiakov
1895 [7]. The work of Blissard on umbral calculus also had a stir in
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Russia. In [7, p. 113] you can find the Blissard Bernoulli number
formulas with sine and cosine.

We are now going to turn to how Nørlund happened to get influences
to his article [37] and to his book [38], published in French 1920 and in
German 1924.

In 1898 Grigoriew [22, p.147] defined Bernoulli numbers of higher
order as follows

tn

(et − 1)n
ext =

∞
∑

ν=0

tνB(n)
ν (x)

ν!
, |t| < 2π. (2)

This corresponds to (31).
The Stirling numbers had also been published in [22, p.187] under

different name. Grigoriew was influenced by Sintsov [46], Imchenetsky
[25] and Mikhail Egorovich Vashchenko-Zakharchenko (1825 - 1912).

Weierstrass has said that the finite differences will once play a leading
rôle in mathematics. Two important elements of finite differences are
the Bernoulli numbers and the Γ function. Nørlund says in a letter to
Mittag-Leffler 1919 ”Someone who is not an expert in these areas, may
not be expert on finite differences”.

Nørlund had discussed the equation △f(x) = Dϕ(x) many years in
his correspondance with Mittag-Leffler.

Theorem 1.1. A q-analogue of Nørlund [37, p. 125].
The following dual Euler-Maclaurin formulas apply:

Dqf(x ⊕q y)=̈

ν
∑

k=0

BNWA,k,q(x)

{k}q!
△NWA,qD

k
q f(y). (3)

Dqf(x ⊕q y)=̈
ν

∑

k=0

BJHC,k,q(x)

{k}q!
△JHC,qD

k
qf(y). (4)

Proof. We only prove the first formula. Let ϕ(x) be a polynomial of
degree ν which satisfies the equation

△NWA,qf(x) = Dqϕ(x). (5)

We can rewrite this slightly.

△NWA,qf(x) = ϕ(x ⊕q BNWA,q ⊕q 1). (6)



4 THOMAS ERNST

Because of a well-known umbral formula we have

f(x ⊕q y) = ϕ(y ⊕q BNWA,q(x))=̈

∞
∑

k=0

BNWA,k,q(x)

{k}q!
Dk

q ϕ(y)=̈

ν
∑

k=0

BNWA,k,q(x)

{k}q!
△NWA,qD

k−1
q f(y).

(7)

Finally operate on both sides with Dq. �

Carl Johan Malmsten (1814-1886), contemporary and friend of Gösta
Mittag-Leffler (1846-1927), discussed a similar formula (q = 1) in [30]
and [31].

2. Pseudo q-Appell polynomials

We will now start to introduce the notation associated with pseudo-
q-Appell polynomials. Often a formula in [12] is slightly changed by
putting the q up instead of down. This corresponds to inversion of the
basis. In some formulas we keep q down, but change it to 1

q
.

Definition 1. The q-coaddition is defined by

(a ⊕q b)n ≡

n
∑

k=0

(

n

k

)

q

qk(k−n)akbn−k, n = 0, 1, 2, . . . . (8)

Definition 2. The Ward-Alsalam q-coshift operator is given by

E(⊕q)ω(xn) ≡ (x ⊕q ω)n (9)

When ω = 1, we denote this operator E(⊕q).

Definition 3. The invertible linear difference operator for the NWA,
is defined by

△q
NWA

ω
≡

E(⊕q)ω − I

ω
, ω ∈ C, (10)

where I is the identity operator. When ω = 1, we denote this operator
△q

NWA.

Definition 4. A q-analogue of the mean value operator of Jordan [27,
p. 6] (ω = 1), Nørlund [38, p. 3], and [33, p. 30].

∇q
NWA

ω
≡

E(⊕q)ω + I

2
. (11)

When ω = 1, we denote this operator ∇q
NWA.
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Definition 5. If ω is a Ward number nq, the difference operator for
the NWA is defined by

△q
NWA

nq
≡

E(⊕q)nq − I

n
. (12)

Theorem 2.1. A q-analogue of the Newton-Gregory series [6, p. 21,
2.7], [27, p. 26], [33, 2.5.1], [29, p. 243].

f(n̄ 1

q
) =

n
∑

k=0

(

n

k

)

(△q
NWA)kf(0). (13)

The formula (13) can be inverted as follows

Theorem 2.2. A q-analogue of [29, p. 136, (3)], [33, 2.5.2].

(△q
NWA)nf(x) =

n
∑

k=0

(−1)n−k

(

n

k

)

f(x ⊕q k̄ 1

q
). (14)

The pseudo-q-Appell polynomials are characterized by the factor
E 1

q
(xt) on the left hand side in the definition of generating function.

In the spirit of Milne-Thomson [33, p. 125-147], which we will follow
closely, we will call these q-polynomials Φq.

Examples of pseudo-q-Appell polynomials or Φq polynomials are

B
(n),q
NWA,ν(x) and F

(n),q
NWA,ν(x).

Definition 6. A q-analogue of [33, p. 124]. For every power series
fn(t), the Φq polynomials of degree ν and order n have the following
generating function

fn(t)E 1

q
(xt) =

∞
∑

ν=0

tν

{ν}q!
Φ(n),q

ν (x). (15)

By putting x = 0, we have

fn(t) =
∞

∑

ν=0

tν

{ν}q!
Φ(n),q

ν , (16)

where Φ
(n),q
ν is called a Φq number of degree ν and order n.

It will be convenient to fix the value for n = 0 and n = 1.

Φ(0),q
ν (x) ≡ xν ; Φ(1),q

ν (x) ≡ Φq
ν(x). (17)

Theorem 2.3. A q-analogue of [2], [33, p. 125 (4), (5)]

DqΦ
(n),q
ν (x) = {ν}qΦ

(n),q
ν−1,q(qx). (18)

∫ x

a

Φ(n),q
ν (qt) dq(t) =

Φ
(n),q
ν+1,q(x) − Φ

(n),q
ν+1,q(a)

{ν + 1}q

. (19)



6 THOMAS ERNST

We obtain the two q-Taylor formulas

Theorem 2.4.

Φ(n),q
ν (x ⊕q y) =

ν
∑

k=0

(

ν

k

)

q

q(
k

2
)Φ

(n),q
ν−k,q(q

kx)yk. (20)

Φ(n),q
ν (x ⊞q y) =

ν
∑

k=0

(

ν

k

)

q

q2(k

2
)Φ

(n),q
ν−k,q(q

kx)yk. (21)

The first formula gives the symbolic equality

Theorem 2.5. A q-analogue of [33, p. 125 (3)]

Φ(n),q
ν (x)=̈(Φ(n)

q ⊞q x)ν . (22)

Theorem 2.6. A q-analogue of [33, p. 125]

(E 1

q
(t) − 1)fn(t)E 1

q
(xt) =

∞
∑

ν=0

tν

{ν}q!
△q

NWAΦ(n),q
ν (x). (23)

Proof. Operate on (15) with △q
NWA. �

Theorem 2.7. A q-analogue of [33, p. 125]

(E 1

q
(t) + 1)

2
fn(t)E 1

q
(xt) =

∞
∑

ν=0

tν

{ν}q!
∇q

NWAΦ(n),q
ν (x). (24)

Proof. Operate on (15) with ∇q
NWA. �

A special case of the Φq polynomials are the βq polynomials of degree

ν and order n, which are obtained by putting fn(t) = tng(t)
(E 1

q
(t)−1)n in (15).

Definition 7.

tng(t)

(E 1

q
(t) − 1)n

E 1

q
(xt) ≡

∞
∑

ν=0

tνβ
(n),q
ν (x)

{ν}q!
. (25)

Theorem 2.8. A q-analogue of [33, (2), p. 126], [43, p. 704], [29, p.
240].

△q
NWAβ(n),q

ν (x) = {ν}qβ
(n−1),q
ν−1 (x) = qDqβ

(n−1),q
ν (q−1x). (26)

Proof. Use (23).
�

By (22) and (26) the following symbolic relations obtain.
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Theorem 2.9. A q-analogue of [33, p. 126].

(β(n),q
⊞q (x⊕q1))ν − (β(n),q

⊞
q x)ν=̈{ν}q(β

(n−1),q
⊞q x)ν−1. (27)

(β(n),q
⊞q1)ν − β(n),q

ν =̈{ν}qβ
(n−1),q
ν−1 . (28)

Theorem 2.10. A q-analogue of [37, (20), p. 163].

△q
NWAf(β(n),q

ν (x)) ≡ f(β(n),q
ν (x)⊕q1) − f(β(n),q

ν (x)) = Dqf(β(n−1),q
ν (q−1x)).

(29)

Theorem 2.11.
ν

∑

k=1

(

ν

k

)

q

β
(n),q
ν−k (qkx)q(

k

2
) = {ν}qβ

(n−1),q
ν−1 (x). (30)

Proof. Use (20) and (27). �

A special case of βq polynomials are the generalized pseudo q-Bernoulli

polynomials B
(n),q
NWA,ν(x) of degree ν and order n, which were defined for

q = 1 in [33, p. 127], [37].

Definition 8. [38, (36) p. 132]. The generating function for B
(n),q
NWA,ν(x)

is a q-analogue of [43, p. 704].

tn

(E 1

q
(t) − 1)n

E 1

q
(xt) =

∞
∑

ν=0

tνB
(n),q
NWA,ν(x)

{ν}q!
, |t| < 2π. (31)

This can be generalized to

Definition 9. Let {ωi}
n
i=1 ∈ C. The generating function for B

(n),q
NWA,ν(x|ω1, . . . , ωn)

is the following q-analogue of [38, (77) p. 143]:

tnω1 . . . ωn
∏n

k=1(E 1

q
(ωkt) − 1)

E 1

q
(xt) =

∞
∑

ν=0

tνB
(n),q
NWA,ν(x|ω1, . . . , ωn)

{ν}q!
,

|t| < min(|
2π

ω1

|, . . . , |
2π

ωn

|).

(32)

Corollary 2.12. A q-analogue of [28, p. 639].

Eq(tB
q
NWA)=̈

t

E 1

q
(t) − 1

. (33)

The following special case is often used.

Definition 10. The pseudo NWA q-Bernoulli numbers are given by

B
q
NWA,n ≡ B

(1),q
NWA,n. (34)
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By the generating function, it turns out that these q-Bernoulli num-
bers are the same as those previously studied:

Bq
NWA,ν = BJHC,ν,q (35)

The following recurrence obtains:

B
q
NWA,0 = 1, (Bq

NWA ⊞q 1)k − B
q
NWA,k=̈δ1,k. (36)

We see immediately that the B
q
NWA ∈ Q(q).

Theorem 2.13. We have the following operational representation, a
q-analogue of [22, (4), p. 147], [47]:

B
(n),q
NWA,ν(ω1, . . . , ωn)=̈(⊕n

1

q
,l=1

ωlB
q
NWA)ν . (37)

The following operator will be useful in connection with B
(n),q
NWA,ν(x).

Definition 11. Compare [6, p. 32] (n = 1). The invertible operator
(Sq

B,N)n ∈ C(D 1

q
) is given by

(Sq
B,N)n ≡

(E 1

q
(D 1

q
) − I)n

Dn
1

q

. (38)

This implies

Theorem 2.14.

(△q
NWA)n = Dn

1

q

(Sq
B,N)n. (39)

Theorem 2.15. A q-analogue of [39, p. 1225, i]. The q-Bernoulli
polynomials of degree ν and order n can be expressed as

B
(n),q
NWA,ν(t) = (Sq

B,N)−ntν . (40)

Proof.

LHS =
ν

∑

k=0

(

ν

k

)

q

B
(n),q
NWA,k,qt

ν−k =
∞

∑

k=0

B
(n),q
NWA,k,q

{k}q!
Dk

q t
ν by(31)

= RHS. (41)

�

Theorem 2.16. A q-analogue of a generalization of [6, p. 43, 3.3]

n
∑

k=0

(−1)n−k

(

n

k

)

B
(n),q
NWA,ν(x ⊕q k 1

q
) = {ν − n + 1}n, 1

q
xν−n. (42)
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Proof.

LHS
by(14)
= (△q

NWA)n B
(n),q
NWA,ν(x) = Dn

1

q

(Sq
B,N)n B

(n),q
NWA,ν(x) =

Dn
1

q

(Sq
B,N)n(Sq

B,N)−nxν = Dn
1

q

xν = {ν − n + 1}n, 1
q
xν−n.

(43)

�

Corollary 2.17.

n
∑

k=0

(−1)n−k

(

n

k

)

B
(n),q
NWA,ν(k 1

q
) = {n} 1

q
! δ0,ν−n. (44)

Proof. Put x = 0 in (42). �

Theorem 2.18. A q-analogue of [29, (1), p. 240], [43, p. 699].

f(Bq
NWA ⊞q (x ⊕q 1)) − f(Bq

NWA ⊞q x)=̈Dqf(x), (45)

where here and in the sequel, we have abbreviated the umbral symbol by
BNWA,q.

We will also state the corresponding equation for B
(n),q
NWA,ν .

Theorem 2.19. A q-analogue of [22, (7), p. 152], [37, (11) p. 124],
[38, (36) p. 132].

f(B
(n),q
NWA ⊞q (x ⊕q 1)) − f(B

(n),q
NWA ⊞q x)=̈Dqf(B

(n−1),q
NWA ⊞q x). (46)

Theorem 2.20. Compare [6, 3.15 p. 51], where the corresponding for-
mula for Euler polynomials was given.

B
q
NWA,ν(x) ≡

{ν}q

E 1

q
(D 1

q
) − I

xν−1 =
{ν}q

E(⊕q) − I
xν−1=̈(Bq

NWA ⊞q x)ν .

(47)

We will now follow Cigler [6] and give a few equations for pseudo q-
Bernoulli polynomials. The first two of these equations are well-known
in the literature (q = 1).

Definition 12. A q-analogue of [24, p. 87], [6, p. 13], [50, p. 575].

s
q
NWA,m(n) ≡

n−1
∑

k=0

(k 1

q
)m, s

q
NWA,0(1) ≡ 1. (48)
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Theorem 2.21. A q-analogue of [6, p. 13, p. 17: 1.11, p. 36], [29, p.
237].

s
q
NWA,m(n) =

Bq
NWA,m+1((n 1

q
)) − Bq

NWA,m+1

{m + 1}q

≡
1

{m + 1}q

m+1
∑

k=1

(

m + 1

k

)

q

(n 1

q
)kBq

NWA,m+1−k qk(k−m−1)

≡
1

{m + 1}q

m
∑

k=0

(

m + 1

k

)

q

(n 1

q
)m+1−kBq

NWA,k qk(k−m−1).

(49)

Theorem 2.22. A q-analogue of [6, p. 45], [37, p. 127, (17)].

xn =

∫ x⊕q1

x

Bq
NWA,n(qt) dq(t) =

Bq
NWA,n+1(x ⊕q 1) − Bq

NWA,n+1(x)

{n + 1}q

.

(50)

Proof. q-Integrate (18) for n = 1 and use (26). �

This can be rewritten as a q-analogue of the well-known identity [21,
p. 496, 8.2].

xn =
1

{n + 1}q

n
∑

k=0

(

n + 1

k

)

1

q

Bq
NWA,k(x). (51)

Cigler has given some examples of translation invariant operators. One
of them is the Bernoulli operator.

Definition 13. The pseudo-q-Bernoulli operator is given by the fol-
lowing q-integral, a q-analogue of [6, p. 91], [8, p. 154], [42, p. 59], [43,
p. 701, 703].

J
q
B,Nf(x) ≡

∫ x⊕q1

x

f(t) dq(t). (52)

Theorem 2.23. A q-analogue of [6, p. 44-45], [39, p. 1217].
The pseudo-q-Bernoulli operator can be expressed in the following

form.

J
q
B,Nf(x) =

△q
NWA

D 1

q

f(x). (53)

Proof. Use (40) and (50). �

Theorem 2.24. A q-analogue of [6, p. 44-45]. We can expand a given
formal power series in terms of the Bq

NWA,k(x) as follows.

f(x) =
∞

∑

k=0

∫ 1

0

Dk
q f(t) dq(t)

Bq
NWA,k(x)

{k}q!
. (54)
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Proof. Assume that

f(x) =
∞

∑

k=0

ak

{k}q!
Bq

NWA,k(x). (55)

As we have

xk = S
q
B,NBq

NWA,k(x), (56)

f(x) =
∞

∑

k=0

ak

{k}q!
(Sq

B,N)−1xk (57)

S
q
B,Nf(x) =

∞
∑

k=0

ak

{k}q!
xk. (58)

This implies

ak = Dk
qS

q
B,Nf(x)|x=0 = Dk

q

△q
NWA

D 1

q

f(x)|x=0 =

∫ 1

0

Dk
qf(t) dq(t). (59)

�

A special case of the Φq polynomials are the pseudo ηq polynomials

of order n, which are obtained by putting fn(t) = g(t)2n

(E 1
q
(t)+1)n in (15).

Definition 14. A q-analogue of [33, p. 142, (1)].

2n

(E 1

q
(t) + 1)n

g(t)E 1

q
(xt) =

∞
∑

ν=0

tνη
(n)
ν

q(x)

{ν}q!
. (60)

By (24) we get a q-analogue of [33], [32, p. 519].

∇q
NWAη(n),q

ν (x) = η(n−1),q
ν (x). (61)

We will now define the pseudo-q-Euler polynomials, a special case of
the pseudo-ηq-polynomials.

Definition 15. The generating function for the pseudo-q-Euler poly-

nomials of degree ν and order n F
(n),q
NWA,ν(x) is the following q-analogue

of [41, p. 102], [33, p. 309], [48, p. 345].

2nE 1

q
(xt)

(E 1

q
(t) + 1)n

=
∞

∑

ν=0

tν

{ν}q!
F

(n),q
NWA,ν(x), , |t| < π. (62)

This can be generalized to
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Definition 16. Let {ωi}
n
i=1 ∈ C. The generating function for the

pseudo-q-Euler polynomials of degree ν and order n F
(n),q
NWA,ν(x|ω1, . . . , ωn)

is the following q-analogue of [38, p. 143 (78)]:

2nE 1

q
(xt)

∏n

k=1(E 1

q
(ωkt) + 1)

=
∞

∑

ν=0

tν

{ν}q!
F

(n),q
NWA,ν(x|ω1, . . . , ωn),

|t| < min(|
π

ω1
|, . . . , |

π

ωn

|).

(63)

Corollary 2.25.

Eq(tF
q
NWA)=̈

2

E 1

q
(t) + 1

. (64)

Obviously, F
(n),q
NWA,ν(x|ω1, . . . , ωn) is symmetric in ω1, . . . , ωn, and in

particular

F
(1),q
NWA,ν(x|ω) = ωνFq

NWA,ν(
x

ω
). (65)

From
(∇q

NWA)n

ω1, . . . , ωn
F

(n),q
NWA,ν(x|ω1, . . . , ωn) = xν (66)

we obtain

(∇q
NWA)p

ω1, . . . , ωp
F

(n),q
NWA,ν(x|ω1, . . . , ωn) = F

(n−p),q
NWA,ν (x|ωp+1, . . . , ωn). (67)

Theorem 2.26. A q-analogue of [33, p. 144, (7)], [38, (7), p.121].
ν

∑

k=0

(

ν

k

)

q

F
(n),q
NWA,ν−k(x) + F

(n),q
NWA,ν(x) = 2F

(n−1),q
NWA,ν (x). (68)

With this formula we can compute all pseudo-q-Euler polynomials
of order n, given knowledge of the polynomials of order n − 1.

Definition 17. A q-analogue of [37, p. 139], [29, p. 252]. The first
generalized q-Euler numbers are given by

F
(n),q
NWA,ν ≡ F

(n),q
NWA,ν(0). (69)

Furthermore we put

Fq
NWA,k ≡ F

(1),q
NWA,k; Fq

NWA,ν(x) ≡ F
(1),q
NWA,ν(x). (70)

Theorem 2.27. The operator expression is a q-analogue of [6, 3.15 p.
51].

FNWA,ν(x) ≡
2

E 1

q
(D 1

q
) + I

xν =
2

E(⊕q) + I
xν=̈(x ⊞q Fq

NWA)ν . (71)
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The following 2 recursion formulas are quite useful for the computa-
tions of the pseudo-q-Euler pol.

Theorem 2.28. A q-analogue of [38, (27), p. 24].

Fq
NWA,ν(x) +

ν
∑

k=0

(

ν

k

)

q

Fq
NWA,k(x) = 2xν . (72)

Theorem 2.29. A q-analogue of [6, 3.16 p. 51], [29, p. 252].

(Fq
NWA ⊞q 1)n + (Fq

NWA)n=̈2δ0,n. (73)

Theorem 2.30. A q-analogue of [5, p. 6 (4.3)], [37, (19), p. 136], a
corrected version of [29, p. 261].

f(Fq
NWA ⊞q (x ⊕q 1)) + f(Fq

NWA ⊞q x)=̈2f(x). (74)

We will also state the corresponding equation for F
(n),q
NWA,ν written in

two different forms.

Theorem 2.31. A q-analogue of [37, (19), p. 150, p. 155], [38, (29)
p. 126].

∇q
NWAf(F

(n),q
NWA ⊞q x)=̈f(F

(n−1),q
NWA ⊞q x)=̈

∇q
NWAf(F

(n),q
NWA(x))=̈f(F

(n−1),q
NWA (x)).

(75)

As before we have

Fq
NWA,n = FJHC,n,q. (76)

Theorem 2.32. We have the following operational representation, a
q-analogue of [47].

F
(n),q
NWA,ν(ω1, . . . , ωn)=̈(⊕n

1

q
,l=1

ωlF
q
NWA,l)

ν . (77)

Theorem 2.33. The pseudo-q-Euler pol. can be expressed as a finite
sum of diff. operators on xn. Almost a q-analogue of [27, p. 289].

Fq
NWA,n(x) =

n
∑

m=0

(−1)m

2m
△q

NWA
mxn. (78)

Theorem 2.34. A generalization of (72).

2−n

n
∑

k=0

(

n

k

)

F
(n),q
NWA,ν(x ⊕q k 1

q
) = xν . (79)

Proof. Develop (∇q
NWA)nF

(n),q
NWA,ν(x). �
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Definition 18. A q-analogue of [24, p. 88]. The notation from N.
Nielsen (1865–1925) [36, p. 401] is a slightly modified variant of the
original paper by Lucas [29].

σ
q
NWA,m(n) ≡

n−1
∑

k=0

(−1)k(k 1

q
)m. (80)

Theorem 2.35. A q-analogue of [6, p. 53], [33, p. 307], [20, p. 136].

σ
q
NWA,m(n) =

(−1)n−1Fq
NWA,m(n 1

q
) + Fq

NWA,m

2
. (81)

Proof.

LHS =
n−1
∑

k=0

(−1)k∇q
NWAFq

NWA,m(k 1

q
) =

1

2

n−1
∑

k=0

(−1)k(Fq
NWA,m(k 1

q
⊕q 1) + Fq

NWA,m(k 1

q
)) = RHS.

(82)

�

So far we considered only pseudo-q-Bernoulli polynomials and pseudo-
q-Euler polynomials of positive order n. As the sequel shows, it will be
useful to allow n also to be a negative integer. The following calcula-
tions are q-analogues of Nørlund [38, p. 133 ff]

Definition 19. As a q-analogue of [38, (50) p. 133], we define pseudo-
q-Bernoulli polynomials of two variables as

B
(n+p),q
NWA,ν (x ⊕q y|ω1, . . . , ωn+p) ≡

(B
(n),q
NWA,q(x|ω1, . . . , ωn) ⊕q B

(p),q
NWA(y|ωn+1, . . . , ωn+p))

ν ,
(83)

where we assume that n and p operate on x and y respectively, and the
same for any pseudo-q−polynomial.

The relation (83) shows that B
(n),q
NWA,ν(x|ω1, . . . , ωn) is a homogeneous

function of x, ω1, . . . , ωn of degree ν, a q-analogue of [38, p. 134 (55)],
i.e.

B
(n),q
NWA,ν(λx|λω1, . . . , λωn) = λνB

(n),q
NWA,ν(x|ω1, . . . , ωn), λ ∈ C. (84)

And the same for pseudo-q−Euler polynomials.
This can be generalized as follows.
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Theorem 2.36. A q-analogue of [43, p. 704], [38, p. 133]. If
∑s

l=1 nl =
n,

B
(n),q
NWA,k(x1 ⊕

q . . . ⊕q xs) =
∑

m1+...+ms=k

(

k

m1, . . . , ms

)

1

q

s
∏

j=1

B
(nj),q
NWA,mj

(xj).

(85)
where we assume that nj operates on xj. And the same for any pseudo-
q−polynomial.

Proof. In umbral notation we have, as in the classical case

(x1⊕
q . . .⊕q xs⊕

q n 1

q
γ)k ∼ ((x1⊕

q n1 1

q
γ′)⊕q . . .⊕q (xs⊕

q ns 1

q
γ′′))k, (86)

where γ′, . . . , γ′′ are distinct umbrae, each equivalent to γ. �

By (26) and (61) we get

(△q
NWA)nB

(n),q
NWA,ν(x) =

{ν}q!

{ν − n}q!
xν−n,

(∇q
NWA)nF

(n),q
NWA,ν(x) = xν ,

and we have

Definition 20. A q-analogue of [37, p. 177], [38, (66), p. 138]. The
pseudo-q-Bernoulli polynomials of negative order −n are given by

B
(−n),q
NWA,ν(x|ω1, . . . , ωn) ≡

{ν}q!

{ν + n}q!

(△q
NWA)n

ω1, . . . , ωn
xν+n, (87)

and the q-Euler polynomial of negative order −n by the following q-
analogue of [38, (67) p. 138]

F
(−n),q
NWA,ν(x|ω1, . . . , ωn) ≡

(∇q
NWA)n

ω1, . . . , ωn
xν , (88)

where ν, n ∈ N. This defines pseudo-q-Bernoulli- and pseudo-q-Euler
polynomials of negative order as iterated △q

NWA and ∇q
NWA operating

on positive integer powers of x.
Furthermore,

B
(−n),q
NWA,ν ≡ B

(−n),q
NWA,ν(0), (89)

F
(−n),q
NWA,ν ≡ F

(−n),q
NWA,ν(0). (90)

A calculation shows that formulas (26) and (61) hold for negative
orders too, and we get

B
(−n−p),q
NWA,ν (x ⊕q y)=̈(B

(−n),q
NWA (x) ⊕q B

(−p),q
NWA (y))ν, (91)

and the same for pseudo-q-Euler polynomials.
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A special case is the following q-analogue of [38, p. 139, (71)]:

B
(−n),q
NWA,ν(x ⊕q y)=̈(B

(−n),q
NWA (x) ⊕q y)ν, (92)

and the same for pseudo-q-Euler polynomials.

Theorem 2.37. A recurrence formula for the pseudo-q-Bernoulli num-
bers and a recurrence formula for the pseudo-q-Euler numbers.

If n, p ∈ Z then

B
(n+p),q
NWA,ν =̈(B

(n),q
NWA,q ⊕

q B
(p),q
NWA)ν , (93)

F
(n+p),q
NWA,ν =̈(F

(n),q
NWA ⊕q F

(p),q
NWA)ν . (94)

Theorem 2.38. A q-analogue of [38, p. 140 (72), (73)], [39, p. 1226,
xvii].

(x ⊕q y)ν=̈(B
(−n),q
NWA (x) ⊕q B

(n),q
NWA(y))ν, (95)

(x ⊕q y)ν=̈(F
(−n),q
NWA (x) ⊕q F

(n),q
NWA(y))ν. (96)

Proof. Put p = −n in (91). �

In particular for y = 0, we get a q-analogue of [39, p. 1226, xviii].

xν=̈(B
(−n),q
NWA ⊕q B

(n),q
NWA(x))ν , (97)

xν=̈(F
(−n),q
NWA ⊕q F

(n),q
NWA(x))ν . (98)

These recurrence formulas express pseudo-q-Bernoulli- and q-Euler poly-
nomials of order n without mentioning polynomials of negative order.

As before, the pseudo-q-Bernoulli- and pseudo-q-Euler polynomials
satisfy linear q-difference equations with constant coefficients.

The following theorem is useful for the computation of q-Bernoulli-
and q-Euler polynomials of positive order. This is because the polyno-
mials of negative order are of simpler nature and can easily be com-

puted. When the B
(−n)
NWA,s,q etc. are known, (99) can be used to compute

the B
(n),q
NWA,s,q.

Theorem 2.39.
ν

∑

s=0

(

ν

s

)

1

q

B
(n),q
NWA,sB

(−n),q
NWA,ν−s = δν,0. (99)

ν
∑

s=0

(

ν

s

)

1

q

F
(n),q
NWA,sF

(−n),q
NWA,ν−s = δν,0. (100)

Proof. Put x = y = 0 in (95) and (96). �
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Theorem 2.40. A q-analogue of [38, p. 142]. Assume that f(x) is
analytic with q-Taylor expansion

f(x) =

∞
∑

ν=0

Dν
1

q

f(0)
xν

{ν}q!
. (101)

Then we can express powers of △q
NWA and ∇q

NWA operating on f(x) as
powers of Dq as follows. These series converge when the absolute value
of x is small enough.

(△q
NWA)n

ω1, . . . , ωn
f(x) =

∞
∑

ν=0

Dν+n
1

q

f(0)
B

(−n),q
NWA,ν(x|ω1, . . . , ωn)

{ν}q!
, (102)

(∇q
NWA)n

ω1, . . . , ωn
f(x) =

∞
∑

ν=0

Dν
1

q

f(0)
F

(−n),q
NWA,ν(x|ω1, . . . , ωn)

{ν}q!
. (103)

Proof. Use (26), (17) and (61), (17) respectively. �

Now put f(x) = E 1

q
(xt) to obtain the generating function of the

pseudo-q-Bernoulli- and pseudo-q-Euler polynomials of negative order.
∏n

k=1(E 1

q
(ωkt) − 1)E 1

q
(xt)

tn
∏n

k=1 ωk

=

∞
∑

ν=0

tν

{ν}q!
B

(−n),q
NWA,ν(x|ω1, . . . , ωn), (104)

∏n

k=1(E 1

q
(ωkt) + 1)E 1

q
(xt)

2n
=

∞
∑

ν=0

tν

{ν}q!
F

(−n),q
NWA,ν(x|ω1, . . . , ωn). (105)

The reason for the difference in appearance compared to the original for
the following equation is that one of the function arguments is a Ward
number. The following two theorems also obtain for βq polynomials.

Theorem 2.41. A q-analogue of [37, p. 191, (10)]:

B
(m),q
NWA,ν(x ⊕q n 1

q
) =

min(ν,n)
∑

k=0

(

n

k

)

{ν}q!

{ν − k}q!
B

(m−k),q
NWA,ν−k(x). (106)

Proof. Use (13) and (26). �

Theorem 2.42. A q-analogue of [33, p. 133, (3)]:

{ν}q!

{ν − n}q!
xν−n =

n
∑

k=0

(−1)n−k

(

n

k

)

B
(n),q
NWA,ν(x ⊕q k 1

q
). (107)

Proof. Use (14) and (26). �
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