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1. ABSTRACT

We first study four different types of ¢g-Hermite polynomials
hl’#](x)v 7,/)1,,11(‘%), kl’#](x)v fl/#](x)

from the point of view of generating functions and operational formulas.
Three of these ¢-Hermite polynomials are ¢-Appell polynomials, and
the remaining one is a pseudo ¢-Appell polynomial. ¢-difference equa-
tions and ¢-hypergeometric expressions are found. In this paper, we
only obtain Rodriguez formulas for two of the four polynomials, namely
hyq(x) and k, 4(z), and accordingly we can only find g-analogues of the
so-called Nielsen’s formula for these two polynomials. Matrix forms for
the polynomials expressed by ¢-Pascal matrices are considered. An or-
thogonality relation for k, ,(z) expressed as a g-integral is found. The
two Cigler g-Laguerre polynomials are introduced and with the help of
the relationship between h, ,(x) and the ¢-Laguerre polynomials, new
generating functions for h, ,(z) are found. In the second part of the
paper we study orthogonality relations for ¢-Jacobi-, ¢-Laguerre- and
g-Legendre polynomials. The proofs will all use ¢g-integration by parts,
a method equivalent to the previously used recurrence technique. The
orthogonality relations are all of discrete type.

2. INTRODUCTION

There are two kinds of Hermite polynomials, H,(z), and He,(x).
The first one is defined by

ot—t2 > Hn(l‘)tn
Xt = Z — (1)
k=0
The second one is defined by
2 SN Hey(2)t"
xt _ n
e T2 = kz — (2)
=0
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The formulas for the two kinds of Hermite polynomials are quite sim-
ilar; sometimes a formula only occurs in the literature in the shape of
one of these polynomials. One example is Burchnall’s formula [5, p. 9].
We will however try to make the best of it and treat these two kinds
of Hermite polynomials as a unity. When we refer to an equation with
an Hermite polynomial of the type (1), we usually denote this with a
sentence like: almost a g-analogue of ..,

The Hermite polynomials were first studied by Sturm [32] in 1836,
who proved that all its zeros are real. In 1864 Hermite [25] presented
these polynomials in the form H,(z) with the Rodriguez formula, dif-
ferential equation, and orthogonality.

The generating function (1) had been given already by Laplace in
connection with the potential in his famous work about celestial me-
chanics. Halphen [24] studied the related Appell polynomials in his own
way. This made the way for the three following crucial contributions.
Laguerre [28] studied He,(z) and concluded that the Hermite polyno-

2

mials give the successive derivatives of e% via the Rodriguez formula.
In 1880 Appell [2, p. 122] gave a modern interpretation of Hermite
polynomials in terms of Appell polynomials. W. Hahn [23] studied
the polynomials in the form He,(z) and made a thorough study of its
Z€ros.

The following formula and its inverse occur regularly in the literature.
One of these was published in different form by Nielsen [30, p. 32].

Theorem 2.1. Nielsen’s formula [5, p. 10], [19].

m/) \m

Hep (x) = mﬁi’")(—nm(f) (”)Hermmﬂenmm!. )

m=0

This formula has been very nicely proved by induction by Chatterjea
[7, p. 53]

The four g-Hermite polynomials will first be defined by operator for-
mulas. Then generating functions, recurrences, alternative operator
formulas, ¢-difference equations and power series representations for
the g-Hermite polynomials will be given. In this paper, we only obtain
Rodriguez formulas for two of the four polynomials, namely h, ,(x)
and k, ,(x). The Rodriguez formula is intimately connected with the
orthogonality relation. Consequently only two orthogonality relations
with g-integral representation are known so far for the four ¢-Hermite
polynomials in this paper. The g-orthogonality for h, ,(z) was found in
Kirschenhofer [27, p. 303]. In this paper we find the g-orthogonality for
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ky,q(z) in (60). The generating functions for the four ¢g-Hermite poly-
nomials corresponding to (2) use a special g-exponential function with
quadratic argument. An interesting lemma for computations with this
g-exponential function is (15). We will also consider relations between
g-Hermite polynomials and related polynomials like Carlitz-AlSalam
and ¢-Laguerre.

Definition 1. The following symbols [11] will be used.

T12.,{2k},, if n even
n+tl

[1.2 {2k -1}, ifnodd

_ {na},
{naq = {a}q

(gl = [ s (©)

{n} ! =

b1 {at,
@=3 -2 M
Eaq4(z) = 7
2 T}y
Theorem 2.2. Cigler [11, p. 30]. The g-difference equation
Dyf(x) = arf(z), ®)
with boundary value f(0) =1 has the solution
Fl@) = Eag(22) )

Remark 1. We often use ¢g-exponential functions as weight functions in
g-integrals. We then have

liIil E,(—2) =0, 0<|¢l <1 (10)
On the the other hand, for 0 < |¢| < 1, the function

E 1 (—[L’)

oscillates around zero with decreasing amplitude for positive real
values of x. The behaviour of the function Equ(%) for 0 < |g| <1 as
lim,_, 4 is very similar to that of E,(—x) as lim,_., . For this reason
these last two functions are used as weight functions for ¢-Hermite- and

g-Laguerre polynomials.

Definition 2. The following g-analogue of [29] is a special kind of ¢-
Appell polynomial. We will often use the generating function technique
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to define polynomials. The (3, polynomials of degree v and order n are
given by

tn B i t 3% (x)

OEE 1)ng(t)Eq($t) =2y (11)

From (11), with ¢(t) = T we conclude that h,,(z) can be
regarded as 3, polynomials ofqo{rQ(ier 0,

B () = hy (). (12)

With this defintion, q-Hermite polynomials of order n are given by

tn h (z)
2 (13)
(Eq(t) = 1)" E2 q {q;} VZO {v}!

The corresponding g-Hermite numbers of order n are given by

n 1 & ealy 14)
(Bo() = 1" By () 4 b

We are now going to define four ¢-Hermite polynomials. Two of them
have been given before by Cigler [11], Désarménien [13] (h,, 4(z)), and
Kirschenhofer [27] (hy, 4(), 1 4(2)). These four ¢-Hermite polynomials
can be ¢-Appell polynomlals or pseudo g-Appell polynomials. One
can see from the generating function which of these two classes the
polynomial belongs to. The various formulas are going to be quite
similar, and we are going to present the formulas in blocks to give a
better overview. Matrix representations will also be given.

The following lemma will be used in the proof of Rodriguez formula
for k, ,(z).

Lemma 2.3.

2 2
El(xt)EQq( t} )E2q( 2, ) Es (= ({ge}zt) )- (15)
We start with
Definition 3. The Cigler ¢g-Hermite polynomials [11] are defined by
hng(2) = (X = ¢"7'Dy)(x = ¢"72D,) ... (x — qDy)1. (16)
The Kirschenhofer ¢-Hermite polynomials [27, p. 292] are given by

Ung(x) = (X — €Dy)"1. (17)
The polynomial k, ,(x) is influenced by Cigler [11].
knq(z) = (xe — D,)"1. (18)

frg(z) = (x = q2Dq)(X - q4Dq) c(x = QQan)l‘ (19)
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Theorem 2.4. The first of the following generating functions is found
in [11, p. 42]. Formula (22) gives an example of a pseudo q-Appell
polynomial.

%‘ft})) -3 oheato), (20)

B, (at)Ez( ) = i e tala). (21)
By (01)Eay () = i{ ) (22)
Eq(21)Eaq(755)a Z e }q e P (23)

Theorem 2.5. We have the following recurrences, all polynomials with
mdex 0 are 1.

[11,p. 43 (4)] hus1,q(2) = Thyg(2) = ¢ {V}ghv-14(z),  (24)
27, p. 292] thys1,4(x) = 2hg() — {V}ethv—14(q2), (25)
kyi1q(z) = 2k g(qr) — {v}eki—1,4(qz), (26)
frr1a(®) = 2 fug(@) = ¢ H{V o foo14(2). (27)

Theorem 2.6. The two first of the following four alternative operator
representations are from Cligler [11, p. 45].

hug(w) = ¢ (xe™ = D)1, (28)

hug(x) = (x = Dyg)(x = ¢°Dy) ... (x = ¢*" "' Dy)1, (29)

Ung(®) = (x = D) (x = ¢*Dy) ... (x = ¢*" 2 Dy)1, (30)

fra(®) = (x = ¢"Dy)(x = ¢" 7' D,) ... (x — gDy)1. (31)

Theorem 2.7. The g-difference equations are

(q”*lD2 — 2Dy +{v})hy (z) =0, (32)

(¢ Dje — 2Dy + {v}o)thq(2) = 0, (33)

(¢Dje ™t — 2Dy + {v}g)kug(a ) 0, (34)

(¢"D; = xDy +{v}g) fog(z) = (35)
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Theorem 2.8. A g-analogue of the Chatterjea operator formula [8, p
683, (3)].

brala) =

(xD, —x* —{n —1},)(xD, — x*> — {n —2},) ... (xD, — x> — {0},)1.
(36)

Proof. Use induction. U

Theorem 2.9. Ezplicit formulas for the four polynomials. We have
written the first two in two different forms.

[27,])296] hmq(l‘) = (272;) (_1)]€q1€2{2k . 1}q”xn—2k =
k=0 q (37)
—~—— 2n
n _n _n1 "o “n1.q), -4 ‘
.T4¢1( 2 9 2 2 |q, 73}2(1—q))
(5] n
[27,p.296] ¢ q(z) = (2/{;) (=) {2k — 1} a2 =
k=0 q (38)

n n n— n n
z" 601 (—57—77—57—— 00, 00, 1‘% m)

[3]

gl) = > (;’g)q(—l)kq("f’“) koL (30)

—
[SIE A
_ o

n k+1
uali) =3 (1) GO - 1 a0
k=0 q
Proof. We prove the first formula.

1 q 0i 1( 1)ix—2iqi2
LHS =2"
Z 1QQ11q>n 21<1q>z 1(1_(])

( )+2m+z ( 1)1‘I72i

_xz 1 q le_q)(l_q%) - (41)
o (-2, _nT—1’ f%’ —nl q>i(_1)i$f2iq—2(;)+2m
) <1a17q>z(1 _Q)Z
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Theorem 2.10. A g-Rodriguez formula for k, 4(x).

kv,q(x) :( 1) (E2q({2} )) ‘DY E2q({2} ) (42)

Proof. A g-analogue of Appell, Kampé de Fériet [3, p. 334] and Rainville
[31, p. 189]. This follows immediately from the first ¢-Taylor formula,
(22) and (15). Another proof is just to use Cigler [11, p. 31, (8)]. O

Corollary 2.11. Almost a g-analogue of Burchnall’s operational for-
mula [5, p. 9]. Let € operate on the function y(zx). We assume that
umbral calculus is used for the index of k, ,(x) in the NWA g-addition
on the RHS. Then

(Es, q({g} )~ 1Dn(E2 q({g} )y) = (—k g(x)e Bg Dg)"y. (43)
Proof. Use the ¢-Leibniz rule together with (42). O

In the same way follows

Theorem 2.12. Cigler [11, p. 45]. The Rodriguez formula for h, 4(z),
a q-analogue of [3, p.334].

2

hoa(@) = (=14 (B, 1 (F5) " DYE, 1 (F0). (44)

Theorem 2.13. Another operational formula is Cigler [11, p. 42, (3)],
13, p. 8, 6.3].

o k2 2\k
q (_Dq>
x) = E —— " (45)
1
{2k}
Proof. Use (37). O
The following table lists the first five h,, ,(x)

1
x

z?—q
v’ — q{3}q2
o g(l), 0+ a3,
1 — (5) 2% + ¢ {3} {5}
The following table lists the first five ¢, ,(2)

8

1
a:Qx— 1
3 — {B}qa:
i (2) * + {3},
2 —(3) +{3} {5}z
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The following table lists the first five &, 4(x)

1
x
22q—1
P — {3}y
w'q® — (3) 2%+ {3}
2°¢" = (3) #°¢* + {3} {5}42
The following table lists the first five f, ,()

1
x
22— ¢
o’ —{3}g2q’
ot — (3) 2% + {3}4¢°

z’ — (g)q$3q2 + {3}{5}42¢°
As all these polynomials form (pseudo)g-Appell sequences it makes
sense to define their vector forms. We will use the following vector
forms for these polynomials

Hy(x) = (hog(x), h14(2),. .., hn_l,q(x)T. (46)
U, (2) = (Yo4(2), h1g(x), ... hn1q(z)". (47)
Ky (z) = (kog(x), k1g(x), ..., kn_l,q(x)T. (48)
Fy(z) = (foq(®), frg(z),. .., fnfl,q(x)T- (49)

Let the n x n g-matrix H, , be given by
H, (i,i—1)={i}s, i=1,...,n—1,
Hn,q(iuj) = 07 j 7é 1 — 1.
Then
Hy(x) = Pyy(2) H, (0), (51)
where the ¢-Pascal matrix P, ,(t) = E,(H,4t) is given by the familiar
expression [18]

Pty =3 {;—MH,’;LI. (52)

The same formula obtains for ¥,(x) and Fj,(z). Finally
Ky(x) = E% (Hr,qt) Kq(0). (53)
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We will now come to formulas where one ¢-Hermite polynomial can
be expressed as a weighted sum of a product of the same polynomials.

Theorem 2.14. A g-analogue of (3).

R o (1), (o) @bt o5
(54

m=0

Proof. A g-analogue of Chatterjea [7]. We start with the following
formula, modify it and find out that it is equal to the LHS.

S0 (1) Beomale)e ™ Dhg(a) = (1) (B 52)

m

T

5 (1) Dr Bl Dy hnalie) = (-1 By )

m=0
=) = kg (7).

D} (Ba (5 g () = (—1)"* (B g (52)) ™ DI En (2
(55)

-~

Q

On the other hand, the first expression can be simplied to

mmf)<—1>m<;)q(:@)qkr_mqun malad Y (m)yla®). (56)

m=0
O

Cigler [11, p. 45 (15)] has found a similar formula:

horg() = G mmfn)(—l)m (;)q(:;)thm,q(xq ") g (){m} .
(57)

m=0

We now come to formulas which are some kind of inverses for the power
series representations of ¢g-Hermite polynomials.

Theorem 2.15. Kirschenhofer [27, p. 295]. Almost a g-analogue of
6, p. 370, (5.4)].

2" =) g2k -1}, (2”]’{) P (). (58)

2k<n q

Proof. Use the generating function (20), multiply by Equ(%), and
equate coefficients of ¢". 0
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Theorem 2.16. A corrected version of Kirschenhofer [27, p. 295]. Al-
most a q-analogue of [6, p. 370, (5.4)].

= 3 e 11, k)‘I’U (59)

The following g-orthogonality has not been found before. The special
form of g-Hermite polynomial chosen makes the proof quite simple.

Theorem 2.17. g-orthogonality for k, ,(z).

| a0 50 o) = S, )~ {mht [ Baa(50) o)
- - (60)

Proof. Assume that n > m. g-Integration by parts gives

/_OO k”’q(x)kva(x)E27q(Ex}Z)dq(x) _

o0

/_OO g (£)(—1)" Dy (Ba o (F)) dy() =

oo

€ R (@) (= 1) D (B (G52)| 5

|0 i) =17 D (N ) = =

o0

— Z g Hm — 14 2} gkm—141.q(0 ) Eag( o, Ven1.0(@)| %o+

=1
oo

S, g ()t [ EBa() dife).

—00

(61)
O

The Carlitz-AlSalam orthogonal polynomials F,, ,(z) [1], [13] are ex-
amples of g-analogues of ™ defined by a generating function made up
of g-exponential functions.

Definition 4.

o0

v B E,(xt)
2 o = B ey (62)

These polynomials F,, ,(z) are connected to the Cigler ¢-Hermite
polynomials [11] by the following substitution. This substitution is
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only valid for ¢ # 1.

() = (%q) : P, (a: %) | (63)

Now let’s do the substitution (63) for the second g-Hermite polynomial.
We start with 1, ,(x) and obtain the following generating function for
».q(7), another g-analogue of z".

! ! it it
; {V}q!wv,q(x) = Eq(xt)Eq(ﬁ Oy ﬁ) (64)
Here )
_ q 2 / 1—gq
Vo g(T) = (1—_61) (i (x T) . (65)

The g-Laguerre polynomial Lgfg,c(a:) was used by Cigler [11].
L) () = (=1)"(e = Dy)" o™

= -~ (nto {n}! k2 +ak kook

_kzo(n— ){k}q =1

— i <1 + «; Q>n <_7L; q>k qk22+k+kn+ak(1 . q)kxk

= (Lt agr (L 1—q)" (66)
_ (Lt aig)a - (7)) & (—a)F (L - g)f

- (=g ;(’f)q (1+a;q)

= %@1 (—n; a+1lg, —z(1 — q)qn+a+1) .

Cigler [10] also defined a closely related g-Laguerre polynomial lﬁfgc(x)
(@) = (=1)" (1B, Dy)"*a”

n+a @( 5 -
Z(n_ ) {k}q =1
(1—q)ra*
(I+aqr (L (I—q) (67)

+ 01 g (n) &) (o) (1 — g)f

(1+ o9k

)y (—n, 00;a + 1g,z(1 — q)q) -
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The following relation between the two polynomials obtains, as was
pointed out by Richard Askey in his review [4].
lflaq)_l C(x) _ qn7n27omL(a) C(;qul)‘ (68)

n,q,

We can now express two of our g-Hermite polynomials in terms of
small g-Laguerre polynomials. The first two of the following four equa-
tions are from Cigler [11, p. 55].

panale) = (—a(1+ )ILLED), (69
Pansna(e) = #(-a(1+ )5 (), (70
Fonal) = (20 + D), ™
Foverale) = o=+ ) E (), ™)

This implies

o (M) = (g 4 Q) LY, (), (73)

n,q
q

hanins (M) (~a1+ e LB, @) (1)

q 7C
This gives the generating functions
5 e A i Vo ) G
" (—a(1+q)){n}e—= =0 {n}te—!t g ) 7

=0

Vz(l+q)

°°h2n+1q( q )q o
) T ey WZ{n}q_Q.tq D in

_on2
n—2n"yn —Qn —n [Bt)n

3. ORTHOGONALITY

In this chapter we consider orthogonality relations for g-Jacobi-,
g-Laguerre- and ¢-Legendre polynomials. The proofs will all use ¢-
integration by parts, a method equivalent to the previously used recur-
rence technique. The orthogonality relations are all of discrete type, a
wellknown phenomenon.

We repeat the definition of ¢g-Jacobi polynomials.
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Definition 5.

P,E?;’ﬂ)(x) = % d1(—n, B+ n; 1+ alg,xq"™7F) =
(1+0a;9)n (n) Bk, k(5 +ati-g-nk
(15 q)n ; k q<1+a;q>k( = '

Theorem 3.1. The following Rodriguez formula obtains: Let x €
(0,1g”"1). Then

P @) % (o)
TZ’ x - .
" {n}!(2q® % q)p a1 T \ (% Qat1-pn
Theorem 3.2.

qﬂ—a—l
[ P @R @ o 500 dy(o) =

0

_ (B + 15 @)n
= 5(m,n)W

QE((1+ a)(—a + B+ n))By(5— a+n,a+1+n).
(79)

Proof. g-integration by parts gives
qﬂfafl

[ PGP @R @ e s ) =
0

G rotn
D'f——r— Péf"ﬁ) x)dy(x) =
[ P P @

xa+n

D37

_ B—a—1
g e PSP @) T -

(x;Q)a+1fﬁ*n

o 1 z 1 p(a,B)
D! (———)D,e P>PNx)dy(x)=...=
/0 I (($§Q)a+1—ﬁ—n) a 4 ( ) q( )

S (-1 Dy

_ _ _ a B—a—1
T D TR @I
=1 ) o2 —pP—n

0

qﬁ—a—l
0 [T e g g (D P @) dy) =
0

Sy (1) e e Lk

k (2" @) ag1-B+k—n

_ 11 pla f—a—1
(€7'D) e P @)]E T+
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04WA £ (ag BL g (DY PO (1)) dy() =

The g-integral can be computed as follows.

qﬂ a—1
/ 2 (@ PO ) a1 dg(2) =
0

qﬁfafl(l _ C]) <m —n q>niaJrﬁi1q(n+a)(fa+ﬁ+mfl)+m
m 1
qﬁ*afl(l _ q) <m - q>00 (n+a)(—a+B+m—1)+m
) <

T
=n+
{

= l+n—a+ﬁ;q>oo

qﬁ—a—l( io:

[+ 1ig)w (nta)(—atBltn)Ht14n _

RHS.

P 1 Z (n—a+ Biqy (nta)(—a+B++n)++1+n _
(n

>
>

l —a+ﬁ® T 0

(ﬁfaJrn)(nJraJrl)(l . q) <17 2n + ﬁ + 1 Q>oo
n—a+pB,n+a+1;¢)

B,(B —a+n,a+ 1+ n)glotmmtet)

q

(80)
O

The orthogonality for ¢-Laguerre polynomials has a weight function
which consists of z¢ times a g-exponential function with negative func-
tion argument. This g-exponential function can also be written as an

1

inverse g-shifted factorial ——r-—

We can use the definition of E,(—x) for z < 1%(1' For larger = we use

the inverse g-shifted factorial formula.
Theorem 3.3. An inequality for E,(—x).
E(-z)>e " 0<qg<1, z>0.

Proof. Denote
N

1
Py =
N ]}_[Ol—i—x(

1—q)g*

Then

Py > exp(— Zx(l —q)¢") = exp(—z(1 — ¢"))
k=0
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Now

E,(—x) = ]&Enoo Py > e, (84)
U

To do the complete proof of the following theorem, we need a formula
for a certain g-integral.

Lemma 3.4. Compare Jackson [26, p. 200, (22)]. The moments of
order n for the q-Laguerre weight function are given by

/OOO e Ey(—w) dy(z) = QE (— <n " ;X - 1)) Ty(n+a+1). (85)

Since the Stieltje moment problem for ¢-Laguerre polynomials is in-
determinate, there are many orthogonality relations. One of these is
the following.

Theorem 3.5. A g-analogue of [33, p. 214, (1.6)]. Let Re oo > —1.
Then

/0 L @) L) (2)a" By —) dy(x) = B(m, ”){%}q! x

E((Z) +na— (n+g+1))Fq(n+a+1).

Proof. Assume that n > m. g-Integration by parts gives

[e.o]

Ly () Ly (x)a® {n}o By (—x) dy(x) =

(86)

/ " L () DR By () dy(a) =
€ L) (2) DI 1< o B (—a)) |3

/OOO(DqE )(Lan( ))D” 1( a-i%Eq(—x))dq(x) =...=

D (D)D) T e L (@) Dy (@0 By (—a)) 5+

(—1)" / Dy VLD, ()2 Ey () dyx) =

Z[(_l)lJrl ((nlz l) {a 1+ k4 l}nflfk7qxa+k+l(_1)kx
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" OTIE (—2) (e D) T e L ()] +

(—1)" / Dy VL, ()2 By () dy(x) =

5(m, n)QE( <”2‘) +na) /0 Tt (—2) d (x).

Finally use the lemma to complete the proof. Il

Lemma 3.6.
DF(18, z)! (H{l j}> (18, ¢=) ", 1 > k. (87)

The following polynomial is defined by the Rodrigues formula to
enable an easy orthogonality relation. ¢-Legendre polynomials have
been given before, but these don’t have the same orthogonality range in
the limit ¢ — 1 as in the classical case. To be able to treat orthogonality
properly, we only consider the Rodriguez formula.

Definition 6. The ¢-Legendre polynomial is defined by
¢ B (-1
{n}q! (18, ¢~)"

P,.(z)= Dy (18, )" (18, 2)"). (88)

This implies

Theorem 3.7. An explicit combinatorial formula for q-Legendre poly-
nomials:

_(721) 1) n n k—1 . i
Prale) = {nqq!(l éE‘q q)”)” kz_% (k)q 1_[()({” o) q(2)(—1)
) n,kf (89)
(1E|qq$)nk ("2 )(1qu H{n_l}q-
Theorem 3.8. For simplicity we put
Prglw) = D} (18, )" (18, 2)"). (90)

Orthogonality relation for q-Legendre polynomials:



EXAMPLES OF ¢-ORTHOGONAL POLYNOMIALS 17

[ b e = dmnr [ ’:: (s n)

_qlfm

TTim — 13y o® (- 1)F (1B, gyt

(18, ¢ Fa)t e {m = 13D P g(xq™") dy ().

/q Dy' (18, z)"(1 8, z)™) ]Z;@) dy(z) =

—_ —
1-m

(D7 (18, 2)™ (L8, 2)™) Pag(wg )] 1o —

[ DB e (18,07 Dy P ar ) dy (o) = =

Sy (mz_k) [Ttm—i}s a® (-1 a8, Fayel")

m—l—k—1
1-m

(18, qm_l_km)kH H {m — j}qu_IPn,q(qka)]q_qkm-f-
j=0

+o(m,n)(—=1)"

/ = <m - n) Tlim - 11, o (—10L8, gyt

q =0

m—n—k—1
—_ —

m—n—k
"B e T {m o B Di Pag(g) dy (o).
=0
O

Theorem 3.9. The q-Legendre polynomials P, ,(x) for small index are
solutions of the following q-difference equations:

(1 —2*)Dgf(x,q) — {2}g2Def(z.q) + {2} f(z,0) =0 (92)
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has solution f(x,q) = P 4(x).

(1= 2*¢") Dy f(w,q) — ¢{2}g2 Do f (x,q) + ¢* {3} f (z,¢) =0 (93)
has solution f(x,q) = Ps4(x).

(1=2°¢") Dy f (. a)=¢*{2}gz Dy f (2, Q)+q3{3}q({2}q)2(q2—q+1)f(:r,(Q) )= 0
94
has solution f(x,q) = Ps4(x).

Theorem 3.10. The function P, ,(x) is the solution of the following
linear second order q-difference equation with initial value f(q~™) =1:

(z%¢™ " = 1) D f(x, q)+
q"({2 g {n + 1}y — a{2n}y)2 Dy f (2, q) — ¢"{n}{n + 1}, f(z,q) = 0.

(95)
Proof. A g-analogue of [12, p. 73]. Let
u=(-1)"(=%¢")n (96)
Then
(z? — 1)Dyu = {2n},zu. (97)

Operate with D;L“ on this, and use the ¢-Leibniz theorem to obtain
(95). O

4. CONCLUSION

We have brought together the two Cigler ¢-Hermite polynomials,
the Kirschenhofer ¢g-Hermite polynomial and a new g¢-Hermite poly-
nomial to form a sequence of equations, where most of the formulas
appear in quadruple. The near g-analogue (43) of Burchnall’s oper-
ator formula [5, p. 9] is presented here for the first time. The ¢-
exponential function E27q(%) introduced already by Jackson in his
articles about ¢-Bessel functions around 1904, and also favoured by
Cigler, plays a crucial role in this formula. The Rodriguez formula,

imperative for (43) also involves the function Eg,q(%). The weight

function for the g-orthogonality of k,, ,(x) yet again involves Eg ,( ;’CQ)

{2}
We have found some operational formulas here, hopefully generalizqa—
tions to other forms will be found in future papers. The work on

g-orthogonalites will be continued in future papers.
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